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Modern machine learning (ML) tools surpass traditional physics-based methods in designing proteins that express in
vitro by learning nuanced patterns from massive databases of protein sequences and structures [1, 2, 3]. Protein
language models (PLMs) such as ESM-2 and inverse folding models such as ProteinMPNN in particularly have seen
widespread use [1, 4]. These two methods rely on distinct architectures and to learn from sequence and structural
data, respectively. Attempts to unify them into a single ML tool capable of leveraging both sources of information
have encountered mixed success, with reports of marginal improvements in sequence recovery [5], no improvements
in downstream tasks [6], or “catastrophic forgetting” of information learned during pretraining [7].

Inference using both inverse folding and language models

FFiguree 1.. Schematicc forr ensemblingg inversee foldingg models,, whichh designn residuess 
usingg locall structurall characteristics,, withh proteinn languagee models,, whichh globall 
sequencee information.. 

Structure-based methods generate unrealistic sequences

Antibody language models do not yield sufficient diversity
Results with the PLM AbLang [15] differed between CDRs H1/L1 and H2/L2, which can be inferred by the V-gene
evident from the unmasked framework sequence, and CDR H3/L3, which cannot. Among the former, we observed
sharp drops in negative log-likelihood to PSSMs (Figure 4), along with higher V-gene sequence identity and
sequence recovery relative to ProteinMPNN designs (Figure 2). In contrast, designs of the CDR H3 showed high
Shannon entropy and poor recovery using AbLang.

Here we show that the performance of such antibody-specific inverse folding models can be matched or exceeded by
ensembling off-the-shelf generic inverse folding models and antibody-specific language models [14], but not generic
protein language models, without any retraining or fine-tuning. Both types of methods compute probability
distributions of all 20 canonical amino acids across a predetermined set of masked residues (Figure 1), and
ensembling such outputs has previously been shown to yield state-of-the-art performance in various zero-shot
prediction tasks [15]. This approach establishes a baseline against which ML-based design tools jointly running
inference on sequence and structure could be evaluated.

Figuree 4.. Antibody-specificc methodss generallyy outperformm generall methodss inn designingg sequencess thatt aree moree 
consistentt withh sequencess sharingg thee samee conformationall clusterss (top)) and CDRR lengthss inn generall (bottom).. CDR
H3 does not form canonical clusters and was therefore omitted from the former analysis.

Combining PLMs 
and inverse folding
On CDRs 1 and 2, ProteinMPNN + AbLang
retained the high sequence recovery of
PLMs in isolation (Figure 2). On CDR H3, it
matched or outperformed both individual
methods on 63% of predictions, whereas
predictions from either AbLang or ESM
were inconclusive and diverse (Figure 5A).
Design using ProteinMPNN + AbLang +
ESM provided no benefit over
ProteinMPNN + AbLang. AbMPNN
outperformed ProteinMPNN + AbLang on
some loops, but the latter provided
consistent performance, whereas the
former’s recovery distribution was highly
bimodal (Figure 5B).
A further example motivates how
ProteinMPNN + AbLang arrive at different
conclusions from AbMPNN. A study
investigating binding of Trastuzumab
variants against its target HER2 found
Y105 on the CDR H3 to be indispensable
to binding [23], and overrepresented
among de novo high-affinity designs [24].
Yet a tyrosine was introduced at position
105 in only 12% of AbMPNN designs and
0% of ProteinMPNN Trastuzumab designs
in our benchmark, compared to 68% of
AbLang designs and 91% of
ProteinMPNN+AbLang designs. But when
evaluating a library of ~35,000 variants,
all of which had Y105 [23], AbMPNN
predictions had greater precision and
recall on HER2 binding prediction (AUC:
0.793) than ProteinMPNN+AbLang
predictions (AUC: 0.766; Figure 6).

Figuree 5.. Comparisonn off ProteinMPNN+AbLangg to variouss methods.. A)
Comparison in CDR H3 loop designs to ProteinMPNN alone and
AbLang alone. B)) Comparison of sequence recovery in all six CDRs by
ProteinMPNN+AbLang, compared to AbMPNN, a bespoke version of
ProteinMPNN fine-tuned exclusively on antibody structures and
structural models. Results in both plots show the average values of 100
designs for each PDB structure using each method.

This study focuses on designing the six complementarity-determining regions (CDRs) of antibodies, which mediate
antigen binding. Simultaneous unrestrained inverse folding using ProteinMPNN of all six CDRs of a previously
published benchmark set [16] led to a highly diverse sequences, as judged by residue-level Shannon entropy values,
but with poor sequence recovery (Figures 2 and 3). Sequence identity to the closest V-gene, calculated using ANARCI
[17, 18], was also found to be poor (not shown). These results were broadly consistent with previous reports [10-12].

Figuree 2.. Sequencee recoveryy andd similarityy too nativee antibodies. A) Sequence recovery was found to be poor across all
CDRs using the inverse folding model ProteinMPNN or ESM alone. The combination of ProteinMPNN and AbLang
outperformed either method in isolation, particularly on CDRH3 designs. BB) Sequence similarity calculated using the
BLOSUM62 distance matrix. Values were flipped so that zero indicates a perfect match and greater values indicate
greater dissimilarity. CC) Average per-residue diversity of CDR designs.

Figuree 6.. ROCC curvee off 35,0000 trastuzumabb mutantss previouslyy measuredd byy deepp mutationall scanning.. Per-residue
probabilities were calculated using either the crystal structure with a fully masked CDR H3, or the complete heavy
chain Fab (for ESM) or Fv (for AbLang) with fully masked CDR H3.

Concluding remarks
Recently several manuscripts have designed inverse folding models that integrate PLMs, with demonstrated
improvements relative to exclusively structural information for protein design. Yet, to our knowledge, no comparisons
have been carried out against naïvely ensembled sequence- and structure-based ML methods for sequence design.
Such an approach could serve as a baseline against which future attempts to combine both sources of information
should be compared. Here we show how it proved surprisingly effective at designing CDRs H1/L1 and H2/L2 of
antibodies, with diminished effectiveness at CDR H3. This shows how inverse folding can be broadly improved using
PLMs, while exposing failure points to be addressed by future ML methods trained on both sources of information.

A workaround involves
supplementing structural datasets,
which typically comprise tens of
thousands of training examples,
with hundreds of thousands to
millions of computational models
generated from the same
sequence sets used to train PLMs
[8]. This has proven useful for
inverse folding of antibodies,
heterooligomeric proteins that are
widely adapted and reengineered
due to their ability to bind a
seemingly limitless range of targets
with high affinity [9-12]. Models
trained on the PDB and
computational models generated
using paired heavy/light chain
sequences from OAS [13], such as
AbMPNN [10], a fine-tuned version
of ProteinMPNN, show improved
antibody sequence recovery
relative to those trained on just
experimental structures or
predicted models. Yet this
predictive power comes at the cost
of more complex training regimes,
a trade-off with unclear benefit
given the rapid pace at which new
generic inverse folding models are
released.

AbMPNN, a version of ProteinMPNN trained on antibody structural data, showed broad improvements in all
respects, including improved sequence recovery and V-gene sequence identity. Yet, relative to other approaches
discussed below, many sequences retained high negative log-likelihoods to PSSMs for both PyIgClassify2
conformational clusters and the broader OAS, indicating persistent yet reduced unrealistic design (Figures 3 and 4).
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