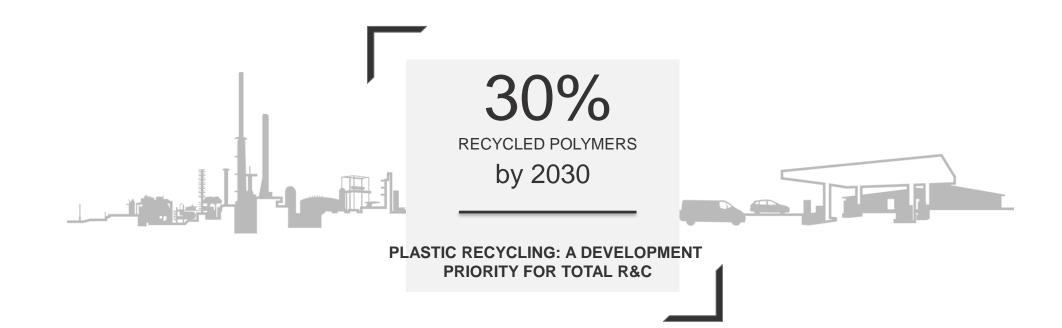


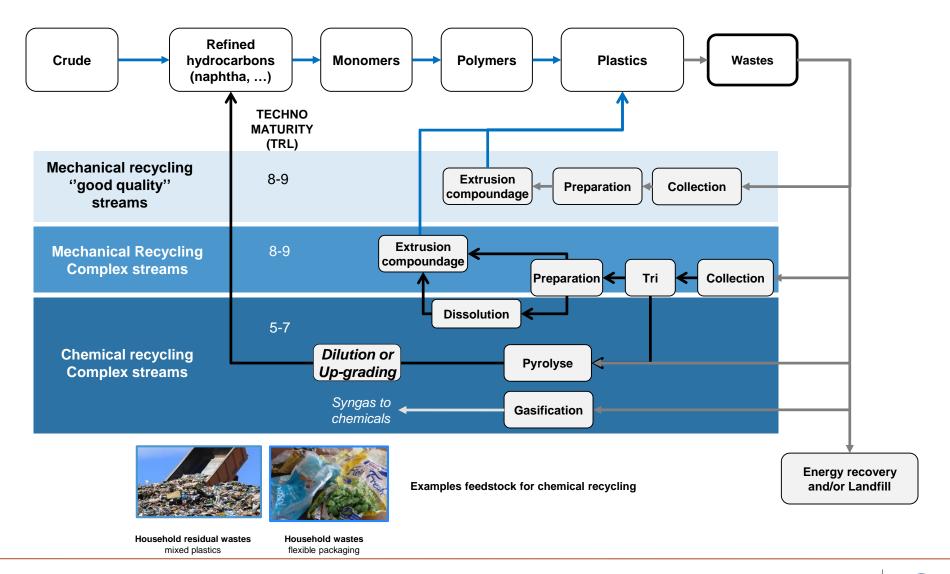
Integrating plastic recycling in petrochemical and refining assets

ERTC 2020, 16-19 November

PLASTIC, What is the main issue?


Only 7% of plastic waste is recycled.

Plastic delivers outstanding benefits.


However end-of-life mismanagement impairs its acceptability.

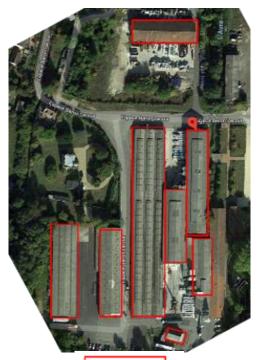
Need for sustainable solutions to curb the growth of untreated polymer waste.

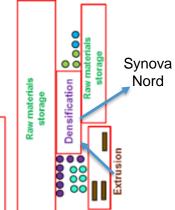
OUR AMBITION: LEADING THE WAY TO PLASTIC RECYCLING

RECYCLING ROUTES

MECHANICAL RECYCLING: SYNOVA

LEADER IN THE PRODUCTION OF HIGH QUALITY RPP, MAINLY FOR THE AUTOMOTIVE SECTOR


- Acquisition by TOTAL in February 2019
- Extension of annual production from 25kT to 45kT by June 2021 for 12M€
- Creation of 15 FTE jobs



ERTC 2020 - 16-19 November

HIGH PURITY RECYCLED PP

- Efficient decontamination technology (Yield > 90%)
- Favorable dossier to obtain FDA (US Food & Drug Administration)
- 100% physical recycled content
- Market premium for virgin substitution

PROJETCS & PARTNERSHIPS

- 1st industrial project in Ohio ~ 50 kty rPP.
- Strategic partners: Total, P&G, L'Oréal, Nestlé, Milliken , Ravago,
- Total:
 - Product performance in depth testing
 - Regular off-take as from 2023
 - Study for a production line in Europe.

Current rPP

Virgin

ERTC 2020 - 16-19 November 6

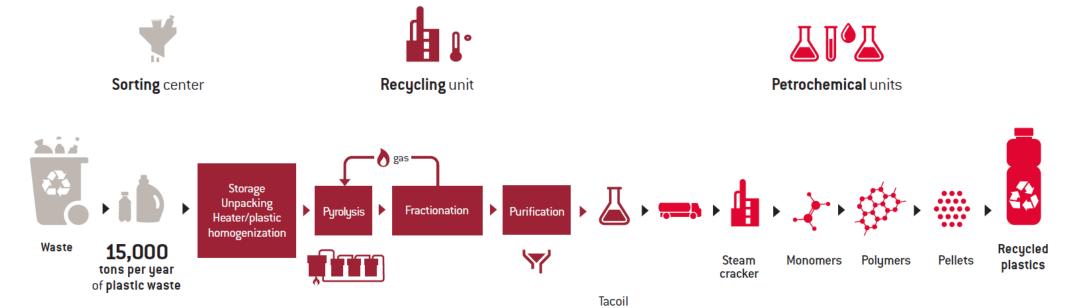
Pyrolysis Technologies: Back to

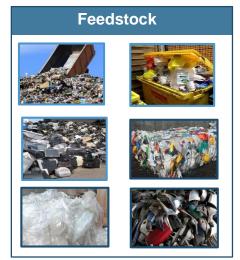
Dasius

Key components:

- Thermal cracking using inert atmosphere.
- Batch and continuous processes are available, several chemical engineering design.
- Heating transfer is the key: slow pyrolysis, fast pyrolysis, flash pyrolysis
- Yield & selectivity's could be different as combination of feedstock quality & temperature.
- The use of a catalyst is possible → thermo-catalytic cracking.
- Some processes use hydrogen, or solvent, or water, and some processes operate in vacuum conditions.

Α	В	С	D	F	G
- Batch - Semi batch	Continuous - CSTR	Continuous - Fluidized bed or - Circulated bed	Continuous horizontal : - extruder - rotary kiln	Co-processing with water - hydrothermal	Co-processing with Solvent & cracking
- Robust - scale-up	charblockingDowntime	efficient transfert of heatno char as by productdowntimeSize	char blockingcomplex to operatelow throughput	high temperature &pressurecost of water treatment	- cost of solvent recovery


MAIN TAKE AWAYS:


- Assess the technology through factual methodology: Performance / Risks / Maturity
- Low maturity only one techno at TRL 7 Pyrolysis technology is based on know-how of operation.
- Feedstock preparation is key, on learning curve.

ERTC 2020 - 16-19 November

CHEMICAL RECYCLING PLANT AT GRANDPUITS REFINERY

Total will be constructing France's first chemical recycling plant with Plastic Energy (Total 60%, Plastic Energy 40%). The new unit will help Total meet its objective of producing 30% of its polymers from recycled materials by 2030

- → On waste streams unsuitable for mechanical recycling
- → To produce food contact polymer quality by closing the plastic loop

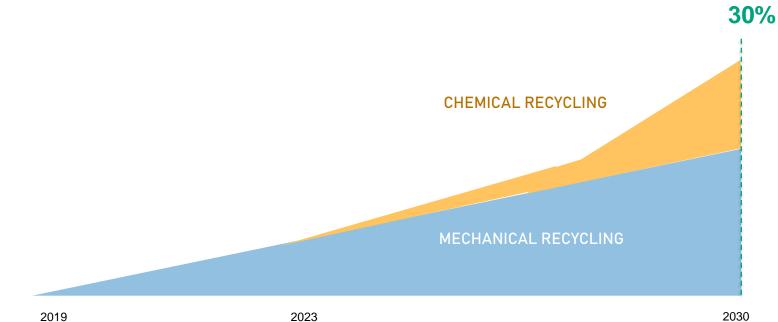
CONVERT PYROLYSIS OIL AT ANTWERP

OBJECTIF

Partial substitution of naphtha by pyrolysis oil to produce certified polymer

PARTENAIRES

Plastic Energy, Customers & Brand Owners


Project: PISSARRO

- Inject pyrolysis oil in steam cracker by trucks coming from PE plants.
- Convert TACOIL over the next 6 months.
- Commercialized certified polymers.
- Secure access to large quantity of pyrolysis oil

TOTAL'S ROADMAP & PORTFOLIO OF DEVELOPMENTS

Acquisition of Synova & doubling capacities

Sourcing & recyclates compounding

SONYS

Total Circular compounds®

50%+ recycled content with similar performances as virgin resins to meet customer demand

đ

Partnership for recycled PP

Collaborate with partners to assess the interest of developing a new plant together in Europe.

Develop & Invest in chemical recycling

Collaborate with partners to experiment at various scale conversion technologies

Alliance To End Plastic Waste

Develop, accelerate and deploy solutions, catalyze public and private investment; and engage communities to help end plastic waste in the environment

THANK YOU

