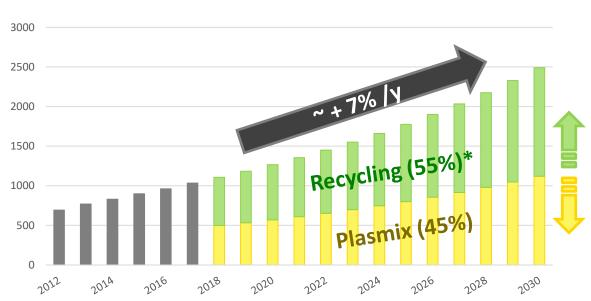


Conversion of Plastic Waste via Slurry Hydrogenation Technology

Stefania Guidetti – R&D Technical Leader – Eni Raffaele Fronteddu – Licensing Out Support Development Manager – Eni Francesco Scavello – R&D - Versalis


Eni Slurry Technology to Convert Plastic Waste

Moving on....

The numbers of Plastic Waste Challenge

Recovery of Plastic WASTE in Italy kt/y

* Mechanical Recycling: these processes often downgrades the quality of the recycled plastic which became unusable after few cycles and are generally not suitable for valuable application such as food packaging

Mixed PLASTC WASTE Availability in ITALY (Corepla National Consortium for the Collection and Recycling of Plastic packages)			
Year	2018	2025	2030
Kt/y	~450	~700	~1000

Plastic WASTE – circular economy

The Concept of Circular Economy is already applied on Plastics Materials, and Mixed Plastic Waste (Plasmix) is the Residual Waste from a virtuous Recycling System.

The numbers of Plastic Waste Challenge

Mixed Plastic Waste plastic composition:

- Polyethylene
- Polypropylene
- Polystyrene
- Polyethylene terephthalate
- Polyvinyl chloride
- Other packaging plastics

Characterization of PLASMIX (Source: COREPLA)			
С	60.8 %wt		
Н	5.6 %wt		
N	0.3 %wt		
0	19.9 %wt		
Cl	0.8 %wt		
Ashes	7.6 %wt		
Moisture	5.0 %wt		
Lower Heating Value	24.4 MJ/kg		

MECHANICAL RECYCLING

ENERGY RECOVERY

Thermal valorization

CHEMICAL RECYCLING

Recycled Building Blocks

Circular Economy Approach: The Chemical Recycling

CHEMICAL RECYCLINGGasificationPyrolysisRefinery ProcessesCO + H2Pyrolysis OilNaphtha

Chemical –
Petrochemical
Industry
Methanol
Ammonia
Dimethyl Ether

Refinery
Diesel by Fischer-Tropsch
process

Refinery:
Upgrading of Pyrolysis Oil

Petrochemical
Industry:
Steam cracking naphtha,
Plastic production

Refinery processes evaluation

CHEMICAL RECYCLING

Refinery Processes

Recycled Building Blocks
Naphtha

Petrochemical Industry:

Steam cracking naphtha,
Plastic production

Refinery Processes Technical Evaluation

Thermal conversion processes:

- Visbreaking and Thermal Cracking
 - Good Conversion of Plastic Waste
 - Poor Products Quality
 - > Risk of coalescence of plastic particles

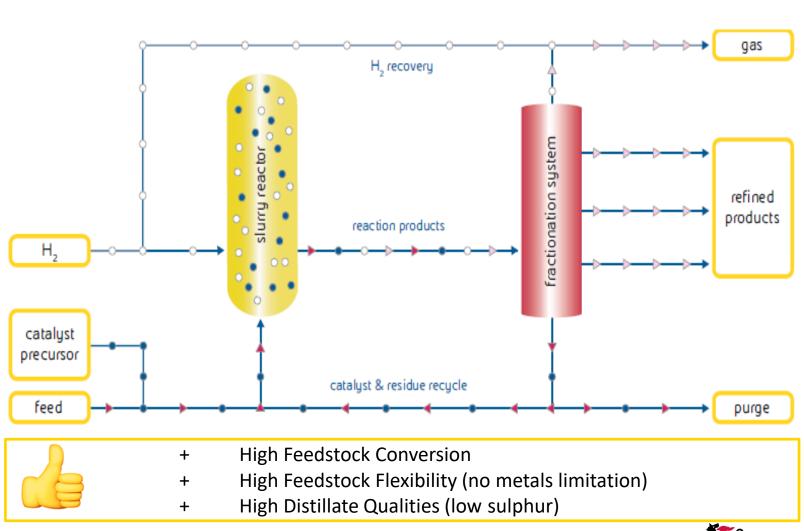
Catalytic conversion processes:

- Fixed bed, Fluidized Bed, Ebullated Bed
 - Catalyst deactivation

Hydro Conversion processes:

- Good Feedstock Conversion
- Good Distillate Qualities (low Sulphur, nitrogen and olefins)

EST: The Eni solution for the BOTTOM of the BARRELL Conversion


Catalyst: very active, well dispersed, no-ageing, slurry

Reactor: the slurry bubble column is perfectly **homogeneous** and **isothermal**

Process with Recycling: the unconverted oil and the catalyst are recycled back to the reactor.

EST in the world:

1 Industrial Scale Plant in Italy2 Industrial Plants in China readyfor start-up

Idea: Eni Slurry Technology to Convert Plastic Compounds directly into Naphtha

Co-processing of
Vacuum Residue &
Plastic Compounds in
Eni Slurry Technology
(EST)

Mixed Plastic
Waste
Selection,
Purification
and
Densification

Eni Experience and Technical results @ bench scale: Pretreatment and Mixture Preparation

- Raw Material: Purified and Densified Plasmix
 - From Mixed Plastic Waste it is necessary to oversort, to purify, to treat it in order to obtain a suitable feedstock
 - It has be defined as a secondary raw material

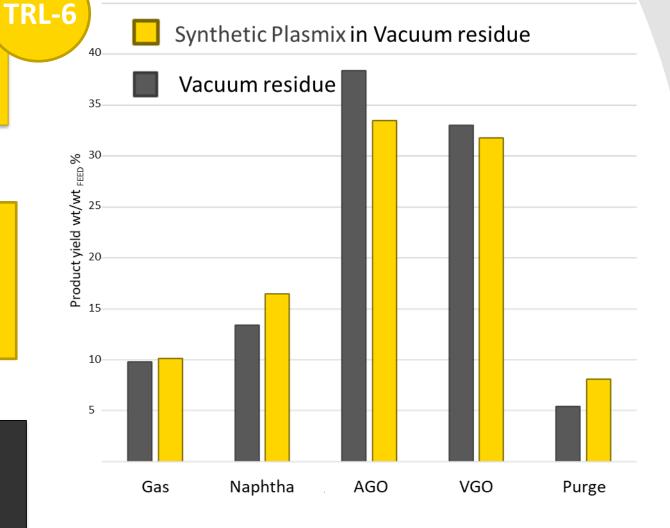
 Selected Secondary Raw Material
 - It has to be easy to transport it
- Secondary Raw Material Pretreatment and Mixture preparation:
 - Modular system
 - Plastic Components Homogenization
 - Mixing with Vacuum residue

Eni Experience and Technical Results: from Pilot Plant Data to Detailed Industrial

Simulation

Pilot Plant Test:

54 days feeding Synthetic Plasmix-Vacuum Residue Mixture @ different concentration30 days @ 10% Synthetic Plasmix in Vacuum residue


From Pilot Plant Data the

Simplified Yield Model for Mixed Plastic Waste

was recovered

Detailed Process Simulation on EST Unit

Eni Experience and Technical: from Pilot Plant Data Results to Detailed Industrial Simulation

Gases

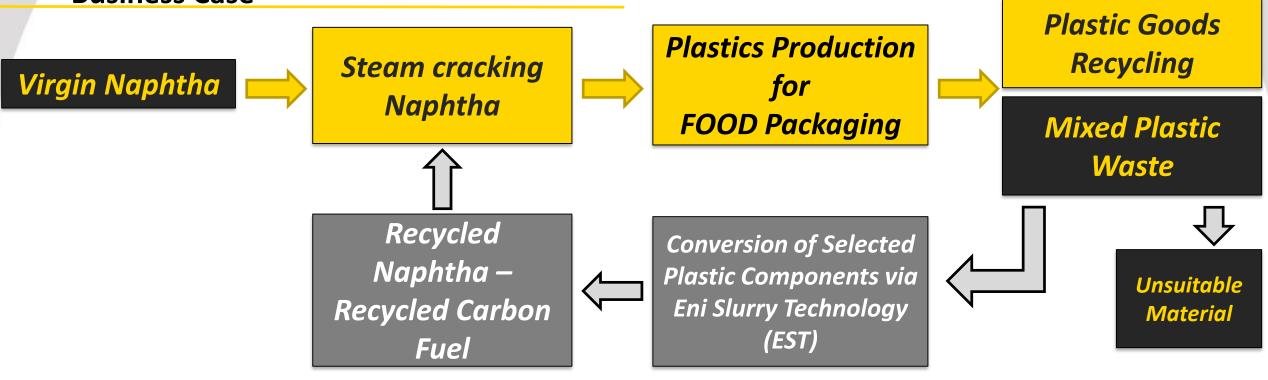
5-15%

Refined
Hydrogenated
Products

65-85%

Purge

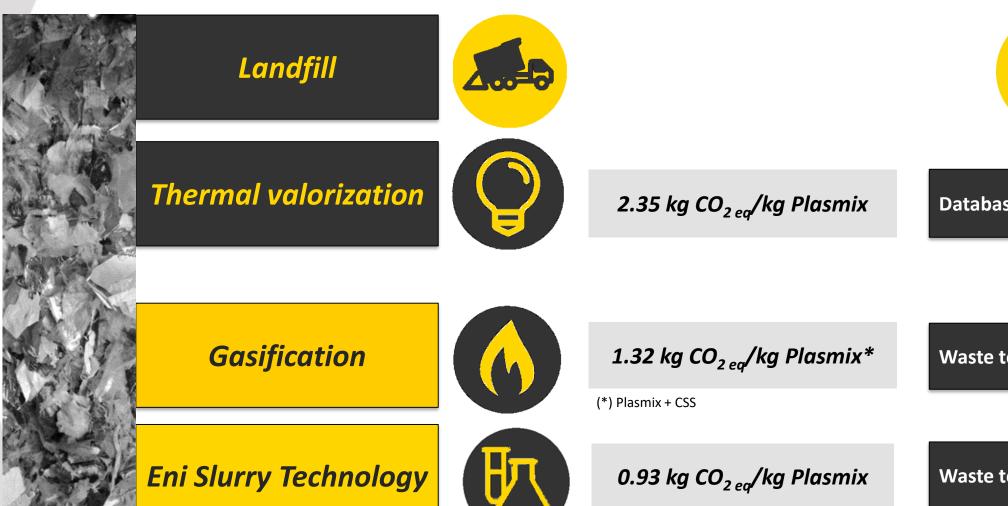
Uncorverted or Partially converted Polimeric compounds


Plastic Feedstock on EST Performance

The flexibility and robustness of EST allow to manage the Plastic Components co-feeding without issues

Production of 40% of Naphtha from Polymeric Components

Economics: Preliminary Simulation of Economics considering an hypothetic Business Case


CASE STUDY
50.000 t/y of Selected Plastic Components
in mixture with Vacuum Residue

considering an Industrial EST Plant 1,0 MTPY

IRR 10,9%

Preliminary Life Cycle Assessment Analysis: CO₂ emission

Database: Ecoinvent 3.6

Waste to Methanol

Waste to Naphtha

Data from Energy and Material balance

for 50.000 t/Y of Selected Plastic Components

Moving on....

Preliminary Results, Evaluations & Conclusions

- Technological feasibility, on pilot scale, of the possible conversion of a synthetic mixture of polymeric materials via slurry hydrogenation proprietary process (EST).
- Evaluation of Economic Profitability
- Evaluation of CO₂ emissions
- Identification of a potential new route for the chemical recycling of Plastic materials

