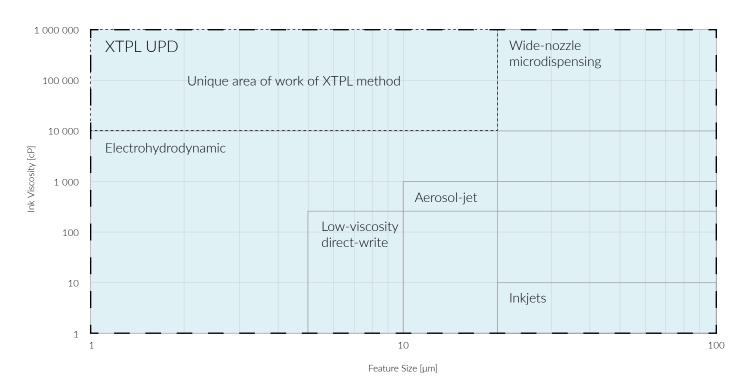


shaping global nanofuture

XTPL® Delta Printing System

First truly additive method for printing conductive single micron lines

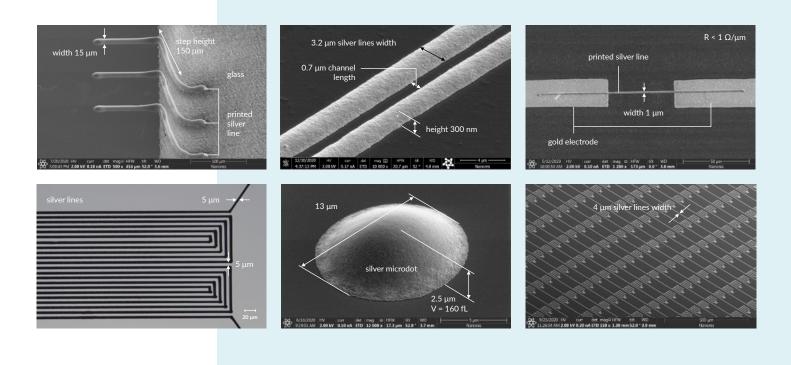
BENEFITS


- Features down to 1 μ m, conductive after single pass
- Up to 500 nm single pass layer thickness at 5 μm
- Up to 45% of bulk Silver conductivity after sintering
- Conductive and not conductive material support
- Printing on heterogeneous materials and 3D topographies
- Uniform & clean features geometries: no overflow or spills
- 8 hours continuous printing stability
- Up to 60 days of on/off printing

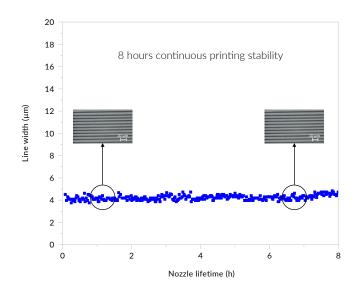
DEVICE DETAILS

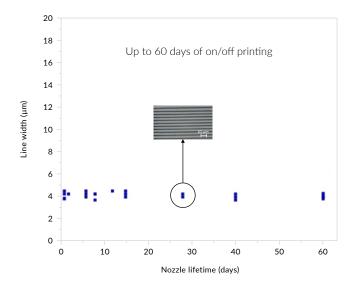
- Fast & easy exchange of cartridges & nozzles
- Only 0.5 mL of ink required to start printing
- Minimum deposited volume: 40 fL
- Minimum ink volume required: 0.5 ml
- Up to a 100% ink utilization

UNIQUENESS OF XTPL ULTRA-PRECISE DEPOSITION TECHNOLOGY

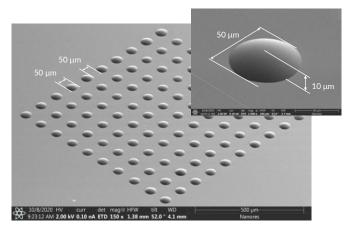

- Ability to print high viscous materials along with small feature sizes
- High aspect ratios just after a single pass
- Matchless variety of printing different materials
- Uninterrupted interconnections on highly complex topographies
- Ultra-high-resolution printing on practically any kind of substrate

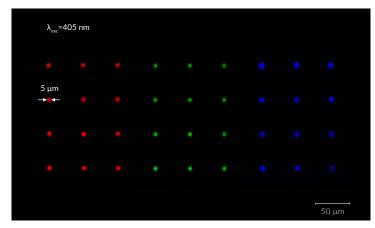
LEGEND:


- unique area of work where there are no competitive methods exists
- general area of work of XTPL


High-precision microdispensing system for rapid prototyping of microelectronics, advanced IC packaging, MEMS, microwave, RF components, FPD etc.

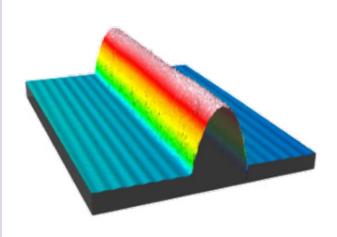
SUPERIOR PRINTING PROCESS STABILITY


The users of XTPL Printing System benefit from a demonstrated best-in-class printing stability: sustained 1 day of continuous printing, and up to 60 days of on and off printing with XTPL CL85 conductive Silver nanopaste.

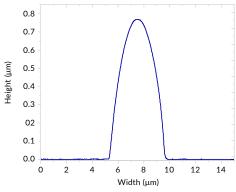


BROAD VARIFTY OF MATERIALS

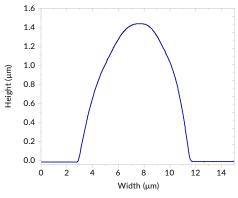
XTPL Delta Printing System has a demonstrated capability of working with a broad variety of 3rd party materials: quantum dot inks, photoresists, polymers. Inks and pastes with viscosities from several to a million cP and particle sizes below 50 nm (if applicable) have been demonstrated in applications that require features of down to $2 \mu m$.


Printed material: Photoresist AR-P 3110 Viscosity = 12 cP

Printed material: QNA.dots from QNA Technology Viscosity ≈ 20 cP


EXCELLENT HEIGHT TO WIDTH ASPECT RATIO

XTPL UPD technology is the first system capable of delivering conductive 1 μ m structures from the very first pass. Single-pass height to width aspect ratios of up to 1:4 have been demonstrated. Multi-pass printing does not require an interim sintering step and delivers the capability of reaching and exceeding the aspect ratio of 1:1.



Height: 0.17 μm Width: 1.0 μm

Height: 0.75 μm Width: 5 μm

Height: 1.4 μm Width: 9 μm

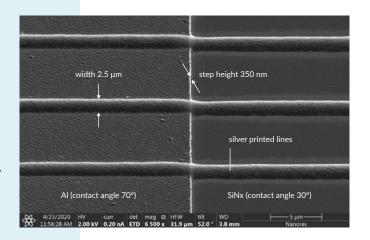
HIGH STEP COVERAGE

ABILITY TO:

cover complex substrate topographies with steps of up to a few hundred μm with continuous silver printed lines

APPLICATIONS:

flexible hybrid microelectronics, micro-LED displays, 2.5/3D interconnections in advanced IC packaging, 3D printed (micro) electronics

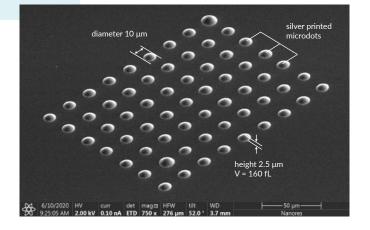

HETEROGENEOUS SUBSTRATES

ABILITY TO:

print lines with homogeneous width on materials with different wettability, e.g. Al and ${\rm SiN_x}$

APPLICATIONS:

large area microelectronics, displays (LCD, OLED, micro-LED), MEMS and semiconductors

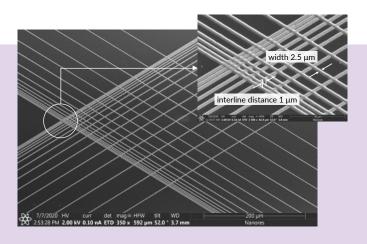

PRINTED CONDUCTIVE MICRODOTS

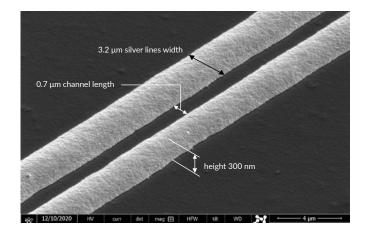
ABILITY TO:

print regular silver microdots with diameter in the range of single to several $\mu m,$ with the height of up to 3 μm

APPLICATIONS:

flip-chip conductive die attach, MEMS, repair in micro-LED display

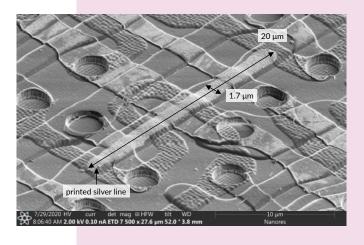



FINE PRINTED LINES AND MESHES

ABILITY TO:

print regular and repeatable conductive meshes with high resolution and precision APPLICATIONS:

large area microelectronics, displays (TE-OLED), transparent antennas

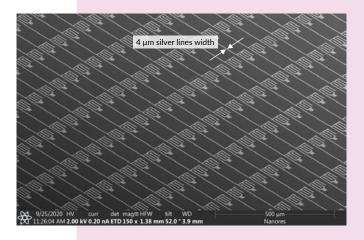

INTERLINE DISTANCE

ABILITY TO

APPLICATIONS:

print lines and other features with high-density without short defects

printed electronic devices, e.g., transistors, high-frequency RF applications, sensors, RDL (redistribution layers), high density interconnections

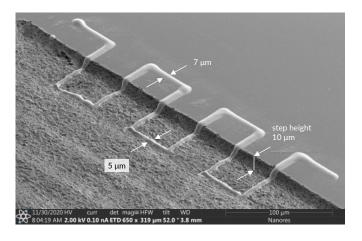

OPEN DEFECT REPAIR FOR OLED

ABILITY TO:

deposit down to 1 μm lines over complex and heterogeneous substrate topographies

APPLICATIONS:

high-resolution displays (OLED, LCD, micro-LED)



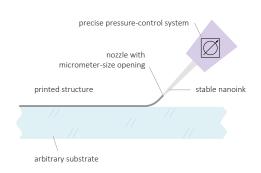
ARRAY OF S/D METAL LAYER FOR PRINTED FPD

ABILITY TO:

print arbitrary complex conductive structures with high precision and repeatability APPLICATIONS:

power/ground supply networks for printed electronics, TFT array prototyping, RDL (redistribution layers) for advanced IC packaging

HIGH-RESOLUTION CONDUCTIVE CONNECTIONS PRINTED OVER THE STEP


ABILITY TO:

print highly adhesive and conductive structures over complex topographies with varying surface roughness APPLICATIONS:

displays (lateral micro-LED interconnections), 2.5/3D interconnections for advanced IC packaging, 3D printed (micro)electronics, MEMS

DEVICE DETAILS

ITEM	VALUE
Feature size	down to 1 µm
Material viscosity	up to 1 000 000 cP
Substrate alignment	3-point levelling table with rotation error correction
Substrate size	50 mm x 50 mm
Maximum printing speed	10 mm/s
Process preview	Live video with recording
XY motor movement accuracy / repeatability	2 μm / 0.5 μm
Z motor movement accuracy / repeatability	0.5 μm / 0.5 μm
Printer cabinet dimensions (excluding peripherals and Printing Workstation)	800 mm x 800 mm x 890 mm
Printer weight	135 kg
Utilities required	compressed gas 10 bar, power supply 110/230V

XTPL® ULTRA-PRECISE DEPOSITION

- Pressure-based direct writing
- Tailored high-viscosity inks
- Ultra-narrow flexible nozzle
- Purely additive
- No electric field required

XTPL COMPREHENSIVE SOLUTIONS

XTPL® DELTA PRINTING SYSTEM

high-precision rapid prototyping printing system for microelectronics

XTPL® EPSILON PRINTING MODULE

high-precision integratable Printing Module for industrial applications

XTPL® CONDUCTIVE INKS

highly-concentrated silver inks characterised by superior stability and homogeneity

XTPL SERVICES

the services in the field of the proof of concept and prototyping projects

shaping global nanofuture

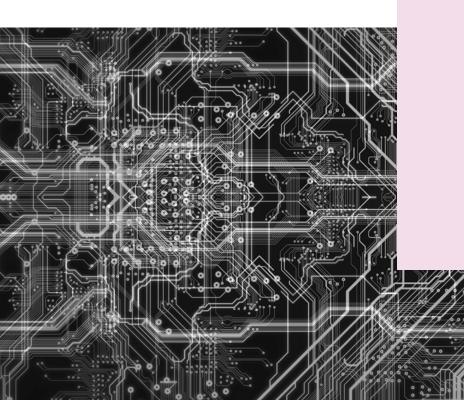
Get your quotation at

L +48 71 707 22 04

XTPL is a globally innovative company developing breakthrough, additive manufacturing technology for ultra-precise printing of nanomaterials.

Contact us for more details.

XTPL S.A.


Stabłowicka 147, 54-066 Wrocław, Poland

xtpl.com

y 1

