

Introducing a new standard & methodology to disclose and measure climate impact for capital goods and consumer durables

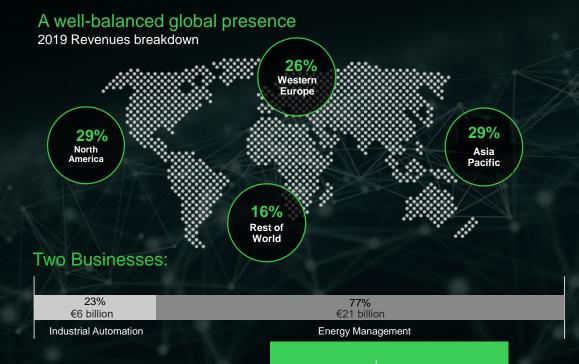
Eric Koenig – Strategy VP Oil & Gas & Petrochemicals

Life Is On

Schneider Electric provides energy and automation digital solutions for efficiency and sustainability

Key figures for 2019

5% of revenues devoted to R&D


€27.2 billion

41%

2019 revenues

of revenues in new economies

135,000+ Employees in over 100 countries

Accelerating on our climate commitments

Climate Week, September 2020

2025

- **Carbon neutral** operations (with CO₂ offsets)
- Climate positive impact with customers
- Train 1 million underprivileged people
- Phase out SF6
- Provide access to energy to **50 million** people
- Support **10,000** entrepreneurs
- Invest 10bn€ in green R&D (2015-2025)

2030

Validated 1.5°C science-based target

- Net-zero CO₂ operations (no CO2 offsets)
- Supplier engagement & green materials
- -40% on customers' CO₂ emissions

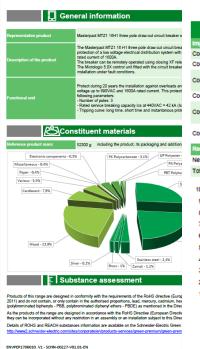
RE 100 EP 100 EV 100

2040

Carbon neutral products, ie carbon neutral on full end-to-end CO₂ emissions (with CO₂ offsets)

- Operate in a **net zero-CO**₂ supply chain (no CO₂ offsets)
- Engage actively with sustainable business initiatives such as the UN **Global Compact**

SUSTAINABLE GOALS


80% of our product turnover cover by a PEP

06/2017

Providing detailed information on product environmental attributes (incl. Carbon Footprint)

SCHN-00227-V01.01-EN - PEP ECOPASSPORT* - Masterpact MTZ1 16H1 three pole draw out circuit bres

SCHN-00227-V01.01-EN - PEP ECOPASSPORT* - Masterpact MTZ1 16H1 three pole draw out circuit breaker with Micrologic 5.0X control unit **Product Environmental Profile** Masterpact MTZ1 16H1 three pole draw out circuit breaker with Micrologic 5.0X control unit eco

SCHN-00227-V01.01-EN - PEP ECOPASSPORT* - Masterpact MTZ1 16H1 three pole draw out circuit breaker with Micrologic 5.0X control unit

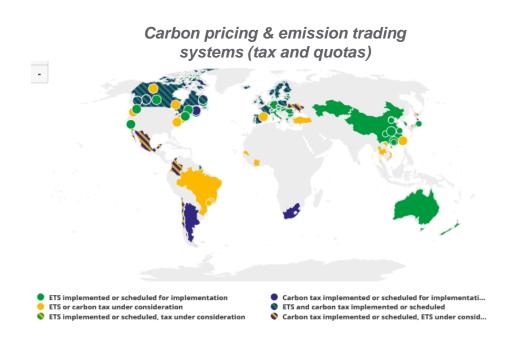
Compulsory Indicators	Masterpact MTZ1 16H1 three pole draw out circuit breaker with Micrologic 5. control unit - LV847240						
npact Indicators	Unit	Total	Manufacturing	Distribution	Installation	Use	End
ontribution to mineral resources depletion	kg Sb eq	9,36E-02	8,43E-02	0.	0.	9,30E-03	(
ontribution to the soil and water acidification	kg SO ₂ eq	7,28E+00	4,93E-01	2,63E-02	4,98E-03	6,75E+00	1,03
ontribution to water eutrophication	kg PO ₄ 3- eq	1,89E+00	9,94E-02	6,05E-03	1,17E-03	1,78E+00	2,67
ontribution to global warming	kg CO ₂ eq	6,45E+03	2,19E+02	5,86E+00	1,59E+00	6,22E+03	4,50
ontribution to ozone layer depletion	kg CFC11 eq	1,49E-04	9,64E-05	0*	1,22E-07	5,27E-05	2,29
ontribution to photochemical oxidation	kg C ₂ H ₄ eq	8,53E-01	5,31E-02	1,87E-03	5,27E-04	7,97E-01	1,09
esources use	Unit	Total	Manufacturing	Distribution	Installation	Use	End
et use of freshwater	m3	1,15E+01	3,93E+00	0.	1,95E-03	7,56E+00	4,4
otal Primary Energy	MJ	1,06E+05	3,99E+03	7,85E+01	2,41E+01	1,02E+05	4,9
00% 90% 80% 70% 60% 80% 90% 90% 90% 90% 90% 90% 90% 90% 90% 9							
O% Contribution to Contribution to Contribution to Contribution to Contribution to Contribution water wat depletion additionation eutrophi	er global			ontribution to lotochemical oxidation	Net use of freshwater		

■ Manufacturing ■ Distribution ■ Installation ■ Use ■ End of life

Optional Indicators		Masterpact I control unit	MTZ1 16H1 three	pole draw out	circuit break	er with Micr	ologic 5.0X
Impact Indicators	Unit	Total	Manufacturing	Distribution	Installation	Use	
Contribution to fossil resources depletion	MJ	1,00E+05	2,88E+03	8,23E+01	2,26E+01	9,72E+04	4,64E+01
Contribution to air pollution	m ^a	7,43E+05	9,75E+04	2,40E+02	1,76E+02	6,45E+05	3,63E+02

ENVPEP1706010 V1 - SCHN-00227-V01.01-EN

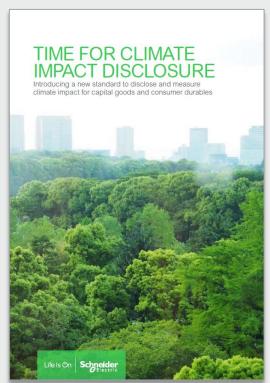
DEMONSTRATING THAT... 'MORE SCHNEIDER IS A BETTER CLIMATE'


measuring the positive CO₂ impact of our offers for our customers

Customers

- CO₂ savings can generate financial savings: external price with tax and quota, internal corporate CO₂ pricing
- SE EcoStruxure architecture is a lever to achieve corporate CO₂ commitments (carbon neutrality, science-based targets, etc.)
- CO₂ savings can be associated to lower energy spent &/or better process efficiency

Investors


- « Positive impact investing » is a business opportunity for the finance sector
- Investing in low-CO₂ companies enables finance sector to reduce climate risks

Source: https://carbonpricingdashboard.worldbank.org/

WHY DO WE SHARE OUR METHODOLOGY?

TIME FOR CLIMATE IMPACT DISCLOSURE

Introducing a new standard to measure and disclose climate impact for capital goods and consumer durables

Schneider Electric, 2019

Schneider Flectric

The current **lack of CO₂ standardization** delivers unclear messages for investors and customers.

Schneider Electric aims to set the standard, with a robust, transparent, verified, methodology for capital goods and consumer durables.

This methodology allow us to pursue different approaches:

- Corporate view, top down, measuring the aggregated impacts of all our offers
- Product view based on the specific use case

Life Is (¹)n

Project view – incorporating our products & equipment

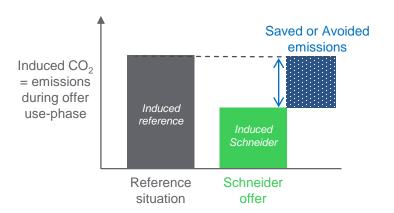
https://www.se.com/ww/en/about-us/sustainability/for-your-business/

DEMONSTRATING THAT... 'MORE SCHNEIDER IS A BETTER CLIMATE'

measuring the positive CO₂ impact of our offers for our customers

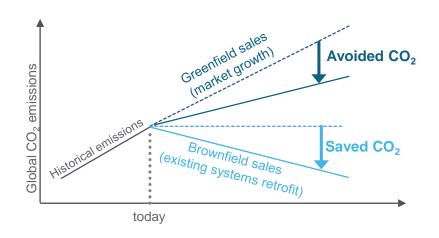
Mtons CO₂ Mtons CO₂ from 2018 to 2020 through our offers Annual CO₂ emissions of: Annual CO₂ sequestered by: 22 M hectares of US forest 5,6 M people in EU Equivalent to Montreal UK surface

Our CO₂ methodology demonstrates the **positive CO₂ impact** of Schneider Electric's offers for customers



METHODOLOGY PRINCIPLES: STRICT DEFINITIONS, TIGHT RULES

Strictly distinguishing 1. induced, 2. saved and 3. avoided emissions during use-phase


KEY #1: « NET » EMISSIONS

...whether saved or avoided

KEY #2: «PROJECT TYPE »

... whether **brownfield** or **greenfield**

A FLEXIBLE CALCULATION METHODOLOGY

Calculation rules are top-down, using aggregated sales data, to ensure data availability, reproducibility and consistency.

1 Based on the volume sold during the year

This methodology is applicable to homogeneous lines of business for which it is possible to count sales with a "physical unit", such as a number of units, MW, kWh of energy, etc.

Examples: VSD, transformers, renewable projects etc.

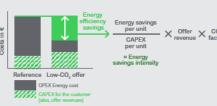
2 Based on CO₂ saving intensity

This methodology is applicable for lines of business for which typical ratios of saved and avoided emissions in $kgCO_2/E$ of sales can be created. This is the case in industries in which CO_2 savings per E of investment can be estimated, based on market studies.


Examples: Process automation, renewables etc.

3 Based on the ROI from energy savings enabled by the offer

This methodology is applicable for lines of business that enable energy savings in a system, and that have negligible or no use-phase emissions.

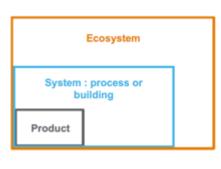

Examples: VSD, building management systems, power management systems etc.

4 Based on the share of energy costs in the offers' total lifecycle costs

This methodology is applicable for lines of business that generate significant use-phase emissions, while enabling use-phase emission savings compared to the reference situation.

Examples: Electric motors, data centers

METHODOLOGY PRINCIPLES


A unique methodology, designed to become an industry standard

1	Transversal	 Transversal methodology framework applicable to all capital goods Covers products, software and services
2	Rigorous and detailed	 Detailed calculation rules per offer/technology, leveraging in each case the best available data (sales data, market data, expert estimates) to quantify the expected use case of our offers and associated energy and CO₂ savings
3	Conservative assumptions	 Conservative assumptions to avoid « green washing » in CO₂ savings claims Distinction saved CO₂ emissions (enabled vs brownfield sales) and avoided CO₂ emissions (enabled vs greenfield sales)
4	Forward-looking	 As solutions are 10 to 20 years in average, methodology takes into account the expected reduction of CO₂ intensity of electricity mix and natural gas across the Globe
5	Transparent and verified	 Methodology developed with the leading independent consulting company Methodology verified by EY Methodology guide to ensure transparency

Case studies

3 Different boundaries to CO2 impact

	Boundary	Induced, avoided and saved emissions				
2	Product	 CO₂ use-phase emissions due to the internal consumption of the product and CO₂ efficiency v/s reference product 				
		Examples : Transformers, UPS, etc.				
	System : process or building	 CO₂ savings delivered to the clients' process or building thanks to the offer sold 				
		Examples: Variable speed drives, BMS in buildings, Process automation solutions, energy audit, energy performance contracting, etc.				
	Ecosystem	 CO₂ savings in a ecosystem thanks to increased connectivity and managing capabilities of an infrastructure enabled by the offer sold or thanks to superior quality of service and operation 				
		Examples: Smart grid solutions (that enable renewable integration in electricity grid, energy demand management), Field service enabling better ecosystem energy efficiency and longer asset lifetime, etc.				

A PRACTICAL EXEMPLE OF A SCHNEIDER ELECTRIC OFFER Variable Speed Drives (VSD)

Variable Speed Drives enable electricity savings by motors, through speed and rotational force regulation Eg: cooling towers, water treatment...

X

They also optimize motor startup and hence have induced impact on power generation dimensioning

Saved and avoided CO₂ with VSD

VSD sales per country and per power output

SE sales reporting

% brownfield (saved) & % greenfield (avoided)

Expert estimate

Brownfield: % of sales for existing motors with old VSD, % for existing motors with no VSD Greenfield: % for new motors VSD net energy efficiency

Expert estimate

Net value taking into account VSD internal consumption Forward-looking electricity emission factor per country

IEA scenario

Average emission factor over VSD life VSD life expectancy

Industry data

When possible: conventional value from industry standards Infrastructure emissions (kgCO2e)

SE carbon footprint

To consider manufacture, distribution and central services emissions of SE

Our 2018 VSD sales have allowed our customers to save (ie in Brownfield projects alone)

1 O MtCO₂

A PRACTICAL EXEMPLE OF A SCHNEIDER ELECTRIC ARCHITECTURE OPTIMIZATION Savings figures compared to current situation for a large electrical substation

substation	CAPEX					OPEX	
	Electrical Distributio n (ED)	ED Technical Building	TOTAL savings	ED CO2 avoided	Technical building CO2 avoided	ED CO2 avoided Over 20 years	
Main	6M€	9M€	15M€	750Tons	240Tons	10120Tons	
Train (x2)	1.5M€	2M€	3.5M€	454Tons	51Tons	1780Tons	
BOG	1.5M€	2.8M€	4.3M€	400Tons	74Yons	1780Tons	
TOTAL			<u>26M€</u>	2500Tons		15460 Tons	

Note:

- Combustion emissions from IPCC and upstream emissions from ADEME
- CO2 valorisation = 35€/Tons → low impact

A PRACTICAL EXEMPLE OF A SCHNEIDER ELECTRIC ARCHITECTURE OPTIMIZATION Example Energy Management Benefits on a 450k/bbd Oil Refinery

Area of Savings	Actions	Avg Energy Improvement (affected processes)	Avg Profit Increase (M\$/yr)	Avg CO2 savings* (KTonnes/Year)	Avg Equivalent number of cars off the road (annual)
Improved Operation and Control	Improve online monitoring, control and optimization	3%	\$75M	162	35,000
Heat Recovery Optimization	Increase heat recovery within and across process units.	5%	\$170M	351	76,500
Advanced Process Technology	Employ new process technology, design, equipment and catalyst technology	5%	\$70M	270	58,500
Utilities Optimization	Optimization and controls for onsite steam and power production/supply and demand optimization	2.5%	\$65M	135	29,000
Aggregat	te Benefit	15.5%	\$380M	918	199,000

Key take aways – CO₂ savings for customers

- Sustainability is good Business: companies that embrace the climate transition generate short-term gains from energy efficiency and appear more likely to succeed in the long-term. Time has come for climate impact disclosure
- More and more companies adopt science-based CO₂ reduction targets, and CO₂ has a price in many areas (carbon tax, quotas, voluntary credit schemes, internal CO₂ price in companies)
- This methodology aims at becoming an industry standard applicable across capital goods and consumer durables sectors. It is pragmatic, robust and flexible to enable fast adoption
- Schneider Electric aims to demonstrate the positive CO2 impact of EcoStruxure offers, with 120 MtCO₂ saved by customers over 3 years
- The methodology is robust and conservative (distinguishing saved from avoided emissions and using forward-looking emission factors), transparent and has been verified by an independent organization

Thanks for your attention!

If you want to discuss further... eric.koenig@se.com daniele.bufano@se.com

