

shaping global nanofuture

Developing highly concentrated metallic inks that overcome dispensing size limitations.

Bringing premium products to the market.

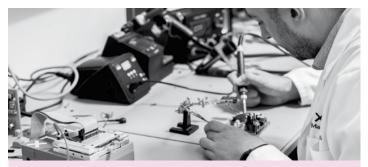
COMPANY & TECHNOLOGY

XTPL is developing globally innovative, additive manufacturing technology that enables ultra-precise printing of nanomaterials. The company provides XTPL® Delta Printing System with Ultra-Precise Deposition (UPD)

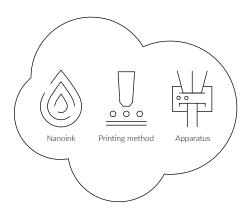
technology bringing the capability of printing high resolution features down to $1.5~\mu m$. The unique portfolio of XTPL® conductive inks allows to obtain conductive submicron structures on a variety of substrates with diverse printing methods.

XTPL® DELTA PRINTING SYSTEM

high-precision rapid prototyping printing system for microelectronics


XTPL® EPSILON PRINTING MODULE

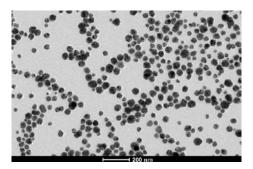
high-precision integratable Printing Module for industrial applications

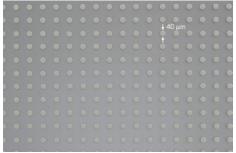

XTPL® CONDUCTIVE INKS

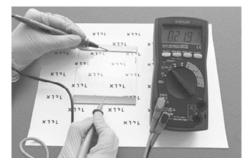
highly-concentrated silver inks characterised by superior stability and homogeneity

XTPL SERVICES

the services in the field of the proof of concept and prototyping projects




INTELECTUAL PROPERTY


XTPL builds a strong and versatile patent portfolio to protect our inventions in the areas of the printing equipment and printing processes, software development, specific industrial applications, as well as inks.

XTPL® NANOINKS BENEFITS

Working on our breakthrough ultra-precise printing technology, we developed a line of highly-concentrated metallic inks (up to 85 wt.%) characterised by superior stability and homogeneity. It is possible to efficiently extrude these inks through micrometer nozzles (even $0.5~\mu m$) without the risk of clogging.

SUPERIOR INK STABILITY

- Secured full manufacturing process: from nanoparticles synthesis to end-product formulation
- Superior ink homogeneity and stability enabling extremely long nozzle lifetime
- Non-clogging behaviour of the ink allowing for continuous efficient printing

HIGH-RESOLUTION PRINTING

- Fine feature printing even on non-planar substrates.
- Uniform well-defined printed functional features
- Excellent wettability on multiple substrates: glass, silicon nitrides, silicon oxides, foils (e.g. Kapton, PET, PEN, PC), silicon wafers

HIGH YIELD OF PRINTED STRUCTURES

- High metal loading (30-85 wt.%)
- Unmatched electrical conductivity up to 50% silver bulk conductivity
- High aspect ratio structures already after single pass

PRINTING METHODS COMPATIBILITY

PRODUCT	IJ36	CL34	CL60	CL85
Metal	Silver			
Average nanoparticles size [nm] (TEM)	35 - 50			
Shape of nanoparticles	Spherical			
Metal content (wt. %)	34 ± 2	30 ± 2	54 - 63	82 ± 2
Electrical resistivity $[\Omega.m]^*$	3.95 · 10 ⁻⁸	3.25 · 10-8	5.11 · 10-8	4.2 · 10 ⁻⁸
Viscosity (25°C, shear rate = 0.2 s ⁻¹) [cP]	26 - 30	200 - 400	30 000 - 50 000	> 100 000
Solvent(s)	Glycol ether		Glycol(s)	
Compatible printing method	Inkjet	 Aerosol Jet (pneumatic atomizers) Flexography LIFT XTPL® Ultra-Precise Deposition 	 Direct Ink Writing LIFT XTPL® Ultra-Precise Deposition 	 Direct Ink Writing Extruders LIFT XTPL® Ultra-Precise Deposition

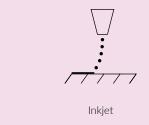
^{*} For recommended sintering conditions

Ag Nanoink IJ36

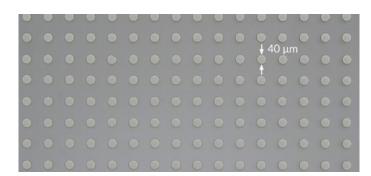
Conductive Silver Ink

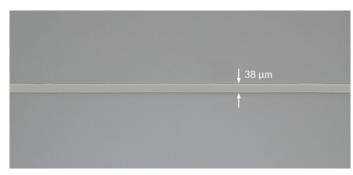
UNIQUE FEATURES

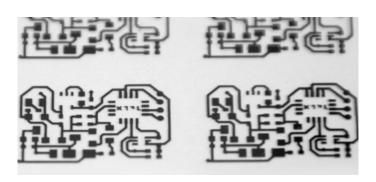
- superior printing stability over 1 month of continuous work with repeatable results, and without clogging of the nozzles
- unmatched electrical conductivity over 40% of bulk Ag conductivity
- high aspect ratio structures already after single pass printing



Compatibility with multiple substrates - Kapton 500HN, PET, PEN, PI, PC, Glass substrates


SUITABLE FOR


TYPICAL PROPERTIES


Silver content (wt. %)	34 ± 2
Density [g/cm ³]	1.2 - 1.4
Average nanoparticles size [nm] (TEM)	35 - 50
Shape of nanoparticles	Spherical
Electrical resistivity $[\Omega.m]^*$	3.95 · 10 ⁻⁸
Viscosity (25°C, shear rate = 0.2 s ⁻¹) [cP]	26 - 30
Surface tension [mN/m] (25°C)	30
Solvent(s)	Glycol ether
Compatible printheads include but are not limited to:	Konica Minolta KM512, KM1024i Fujifilm Dimatix S-class, Samba G3L, DMC

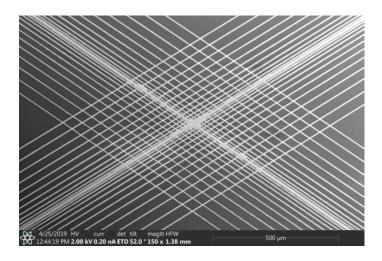
EXAMPLES OF INKJET PRINTED STRUCTURES USING THIS PRODUCT

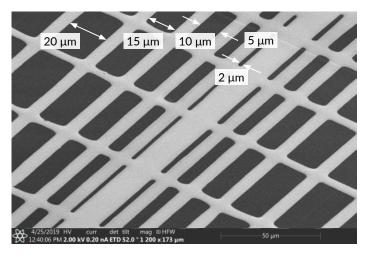
^{*} For recommended sintering conditions

Ag Nanoink CL34

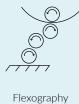
Conductive Silver Ink

UNIQUE FEATURES


- up to 50% bulk silver conductivity, even at low silver concentration
- printable on foils for the manufacturing of flexible electronics
- suited for applications where low aspect ratio profiles are searched or necessary


TYPICAL PROPERTIES

Silver content (wt.%)	30 ± 2
Density [g/cm³]	1.50 ± 0.05
Average nanoparticles size [nm] (TEM)	35 - 50
Shape of nanoparticles	Spherical
Electrical resistivity $[\Omega.m]^*$	3.25 · 10 ⁻⁸
Viscosity (25°C, shear rate = 0.2 s ⁻¹) [cP]	200 - 400
Solvent(s)	Glycol(s)


 $^{^{}st}$ For recommended sintering conditions

EXAMPLES OF THE STRUCTURES PRINTED USING ULTRA-PRECISE DEPOSITION

Aerosol jet

XTPL® Ultra-Precise Deposition

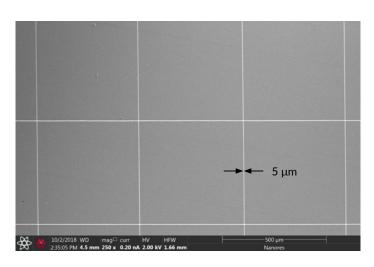
SUITABLE FOR

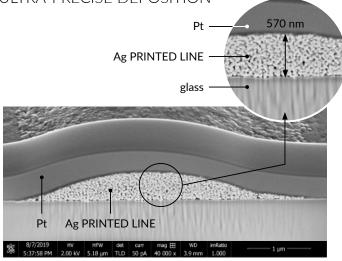
Ag Nanoink CL60

Conductive Silver Ink

UNIQUE FEATURES

- high viscosity product, enabling the printing of fine features with higher aspect ratios
- easy dispensing, with rheological properties specifically designed for XTPL® Ultra-Precise Deposition and Direct Ink Writing methods




TYPICAL PROPERTIES

Silver content [wt. %]	54 - 63
Density [g/cm³]	2.00 ± 0.15
Average nanoparticles size [nm] (TEM)	35 - 50
Shape of nanoparticles	Spherical
Electrical resistivity $[\Omega.m]^*$	5.11 · 10 ⁻⁸
Viscosity (25°C, shear rate = 0.2 s ⁻¹) [cP]	30 000 - 50 000
Solvent(s)	Glycol(s)

^{*} For recommended sintering conditions

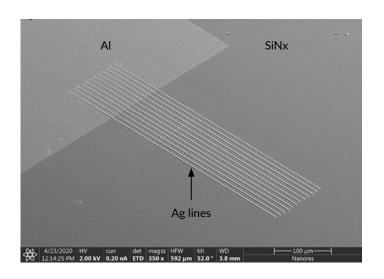
EXAMPLES OF THE STRUCTURES PRINTED USING ULTRA-PRECISE DEPOSITION

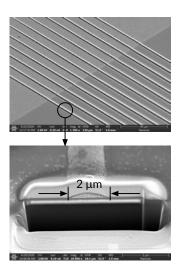
SUITABLE FOR

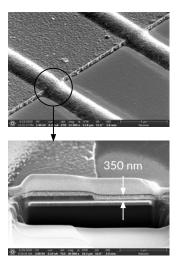
XTPL® Ultra-Precise Deposition

Ag Nanoink CL85

Conductive Silver Paste


UNIQUE FEATURES

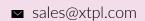

- very high viscosity product, enables the printing of ultrafine features of high aspect ratios
- displays unmatched non-clogging properties, allows long nozzle lifetime (2.5 μm nozzle opening, even more than 1 month of printing)
- dispensable through capillaries as narrow as 1 μm size, resulting in the deposition of homogeneous thin lines


Silver content [wt. %]	82 ± 2
Average nanoparticles size [nm] (TEM)	35 - 50
Shape of nanoparticles	Spherical
Electrical resistivity $[\Omega.m]^*$	4.2 · 10 ⁻⁸
Viscosity (25°C, shear rate = 0.2 s ⁻¹) [cP]	> 100 000
Solvent(s)	Glycol(s)

TYPICAL PROPERTIES

EXAMPLES OF THE STRUCTURES PRINTED USING ULTRA-PRECISE DEPOSITION

Extruders


SUITABLE FOR

^{*} For recommended sintering conditions

shaping global nanofuture

GET YOUR QUOTATION AT

L +48 71 707 22 04

XTPL nanoinks enable you to shorten your development cycles, and at the same time achieve the required level of resolution and electrical conductivity in a reproducible manner.

